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A model of intrinsic and driven spindling in
thalamocortical neurons

J. L. HINDMARSH! anp R. M. ROSE?

School of Mathematics' and Department of Physiology®, University of Wales College of Cardiff, Cathays Park,
Cardyff, CF1 1SS, U.K.

SUMMARY

We add a slow hyperpolarization-activated inward current Iy = ggmy(v — vy) to our previous model of
rebound bursting (Hindmarsh & Rose Phil. Trans. R. Soc. Lond. B 346, 129—150 (19944)) to give a four-
dimensional physiological model, and a corresponding four-dimensional model of the model. The
physiological model generates periodic ‘bursts of bursts’ or ‘spindles’ resembling those recorded
experimentally in thalamocortical (Tc) neurons. The model of the model is simplified to a two-
dimensional system having a limit cycle which corresponds to the slow spindle oscillation of the
physiological model. Analysis of the stability of this two-dimensional model allows us to divide the
parameter space of the slope (y,,,) and shift (6,,,,) parameters of my_(v) into regions in which the model
generates spindles or continuous bursting. This enables us to determine the parameter values required
for spindling in the physiological model and to explain the experimentally observed effects of
noradrenaline.

Next we examine whether a cell at a stable equilibrium point can be driven into spindling by applying
a sinusoidal input at the resonant frequency. This is done by averaging the equations for the driven
model of the model. Analysis of the stability of these averaged equations shows how the regions of the
(04> ¥Ymy) Parameter space change when the system is driven by a sinusoidal input. This enables us to
choose parameter values for a physiological model of a driven spindle.

We show that if the physiological model is modified to include a voltage-dependent time constant for
my, spindles, similar to those of TC cells, can be obtained with a small Ca?*-activated K+ current.
Finally our knowledge of the form of the bifurcation diagram and the conditions for resonance leads to a
new suggestion for the roles of GABA, and GABAg inhibitory postsynaptic potentials when Ta cells are
driven into spindling by neurons of the nucleus reticularis thalami.

be confused with the spindles recorded in vivo which
appear to be driven by spindle activity in the nucleus
reticularis thalami (nRT) (Steriade & Deschenes

1. INTRODUCTION

In the first of this series of papers (Hindmarsh & Rose
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1994a) we showed how a cell with an It — Ixga(m)
system of ionic currents rebounds to give either
continuous bursting or a sequence of decaying bursts
following the application of hyperpolarizing current
step. Similar properties occur in cells of the lateral
habenula nucleus (Wilcox et al. 1988), the nucleus
reticularis (Avanzini et al. 1989; Bal & McCormick
1993), and the inferior olivary nucleus (Yarom 1991;
Gutnick & Yarom 1989).

We now show how the addition of a slow
hyperpolarization-activated inward current, Iy
results in an It — Igcar) — Iy model which can
generate periodic ‘bursts of bursts’ or ‘spindles’.
Thalamocortical (Tc) cells have been shown to have
I (Pollard & Crunelli 1989; McCormick & Pape
1990a), and to be capable of spindle generation
(Leresche et al. 1991; Soltez et al. 1991). Note that
these ‘intrinsic’ spindles only occur in about a third of
TC cells in the cat (Soltez et al. 1991) and should not

Phil. Trans. R. Soc. Lond. B (1994) 346, 165-183

1984; Steriade et al. 1985, 1987, 1988).

Throughout these papers our interest has not been
simply to produce a model that simulates experi-
mental recordings but to discover how the model
works. Bifurcation diagrams are an essential feature of
such a discussion. For instance use of the bifurcation
diagram enables us to see that by a suitable choice of
parameter values it is possible to produce rebound
bursting and spindling without the addition of I gy(T)
(M. A. Alawar, J. L. Hindmarsh & R. L. Rose,
in preparation). However, the mechanism is very
delicate and is enhanced by the addition of Ixc,(t) to
give a more robust model.

From the point of view of understanding the
dynamics of the model we will see that spindling can
be explained as a cyclical movement around an
inverted bifurcation diagram (see figure 1). In an
alternative model of spindling Destexhe et al. (1993)
have discussed a mechanism in which spindle
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Figure 1. Schematic illustration of the mechansim of spindle generation. The figure shown here is a reproduction
of the bifurcation diagram of the three-dimensional model discussed previously (Hindmarsh & Rose 19944) with
I replaced by an effective external current /... Arrows indicate the possible path of the EP as [, decreases from
1.6 pA cm™ to —0.2 HA cm™2, then they indicate maximum and minimum potentials of the LTSs as /.. increases

again.

generation results from a two-variable description of
Iy rather than the addition of Igc,(r)- In their model
spindle generation can also be seen as periodic motion
around an inverted bifurcation diagram. However in
their model the effect of adding f35 is both to invert a
previously non-inverted bifurcation diagram and to
provide a mechanism to generate the cyclical move-
ment around this diagram. Our experience is that
choosing parameter values so that Iy performs this
dual function is a delicate matter (see §8).

In the model, that we will discuss, spindles are
obtained by adding Iy to a model which has a small
Igcacr)- In this case the bifurcation diagram, in the
(v,I) plane, is already inverted by Ixc,(t) before the
addition of [i;. The system can be driven around this
bifurcation diagram using an my variable with either
a fixed time constant (as in the simple model of § 5) or
using a two variable description of I (as in the model
of §8). We think that inverting the bifurcation
diagram independently of Iy makes the model more
robust. Our final model (figure 7) also appears to bear
a closer resemblance to the experimental recordings
than the model of Destexhe et al. (1993). For instance
their model has large-amplitude low threshold spikes
(Ltss) and shows marked oscillations during the inter-
spindle period. Neither of these features occur in the
real cell (Soltez et al. 1991).

The addition of /i to the It — Igg,(T) model results
in a four-dimensional system of differential equations.

Phil. Trans. R. Soc. Lond. B (1994)

We will see that the intrinsic spindles which this
model generates can be thought of as the combination
of two limit cycles. That is the oscillation of the L.Ts is
modulated by a much slower oscillation that switches
the system alternately between low threshold spiking
and silence. Note that addition of further equations
for the sodium current would add a very fast
oscillation of the action potential. This would give
bursts of action potentials on the crest of each low
threshold spike. Thus the full model could be thought
of as having three distinct limit cycles on three very
different timescales. As in the previous papers
(Hindmarsh & Rose 19944,6) we are mainly inter-
ested in the behaviour in the subthreshold region, but
in §8 we will consider a more complete model which
has fast action potentials, and compare this model
with experimental recordings.

Our main concern is to describe the slowest limit
cycle oscillation, which is responsible for the appear-
ance of the spindles. We use the model of the model
introduced in Hindmarsh & Rose (1994a) to simplify
the description of the system. A further simplification
is made by taking advantage of the slowness of the
activation of Iy. The resulting model is a two-
dimensional system of differential equations of
polynomial form (see equations (4)). The simplicity
of these equations makes it easy to see how they
behave, and to calculate parameter values for which
they will have the necessary limit cycle. These model
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equations also allow us to predict the effect of shifting
the activation potential of Iy, and the effect of
periodic stimulation of the system.

Besides giving a clearer theoretical understanding
of the mechanism of spindling, from an experi-
mental point of view, our knowledge of the form of
the bifurcation diagram enables us to predict the
conditions under which Tc cells will resonate to an
applied sinusoidal current. This leads, in the final
section, to a new suggestion for the roles of GABA,
and GABAg inhibitory postsynaptic potentials (1Psps)
when TC cells are driven into spindling by neurons of
the nucleus reticularis thalami (Steriade & Deschenes
1984; von Krosigk et al. 1993).

2. THE PHYSIOLOGICAL MODEL

Based on the experimental measurements for TC
cells of McCormick & Pape (19904) and Soltez et al.
(1991), we assume that Jp; is a mixed Na*t/K* current
of the form Iy = ggymy(v —vy). As usual gy is the
maximal conductance, my the activation variable and
vy the equilibrium potential. Adding this current to
equations (4) of Hindmarsh & Rose (19944) gives the
following four-dimensional system:

b= C—l{_gL(v —vy) —gKnﬁo(v)(v —vg) )

—&rMmr,, (v)hT(v - UCa)

c
— EKCa(T) (m)
—gumu(v—ovg) + L+ T+ 1(2)},
hr = T}:—Tl(hTw(U) — ht),

¢ = —kgr MT,, (@)h1(v — vea) — kcac,

g = T (Mg (v) — myg), )

Table 1. Parameter values for the physiological model

where

1
") = T G e~ )

The parameter values are the same as those
of our standard three-dimensional (v,Ar,¢) model
(Hindmarsh & Rose 1994a), except for the new
parameters gy, Uy, Tp,, Ya and Oy whose values will
be given below following our discussion of how the
model works. Although we will choose values similar
to those found experimentally (see table 1), our choice
is largely determined by the equations of our standard
model. Note that in equations (1) we have used a
voltage-independent time constant 75'. We have done
this because at this stage our aim is to obtain a simple
model that clearly displays what we regard as the
underlying mechanism for spindle generation. In §8
we will refine this model to include a voltage-
dependent time constant for [g.

As in Hindmarsh & Rose
Iy =—135pAcm™2. The

becomes:

(1994a) we put
equation for ¢ then

b= C 7 {—gu(v — v1) — grmoo(0) (v — k)

—&rMmt,, (U)hT(U - vCa)

c
— ZKCa(T) (W) (v —vk) + Ip}

+C7HI — gamu(v — vp))-

where the terms in brackets {} are the same as in
Hindmarsh & Rose (19944) and an equivalent
external current,

(I — ggmu(v— vn)),

has been added. Now rewrite this equivalent external
current as:

(1 —gHmH(U - UH)) =

(I — gumu(v— o) — gumu(vr, — UH))'

physiological model
of the undriven

McCormick & Pape Soltez et al.

parameter (units) spindle (1991a) (n=7) (1992) (n=3)

vg (mV) —40 —43+9 —-33+1.2

7 (ms™?) 0.0005 0.0005-0.4 0.0001-0.5
(voltage dependent) (voltage dependent)

yu (mV™1) -0.4 —0.17 -0.25

0y (mV) =71 —-76+3 —-73+4

gu (mScm™2) 0.8* 5-25nS per cell 4-6nS per cell

(total membrane
conductance)

(total membrane
conductance)

2 The value for this parameter is difficult to estimate. McCormick et al. (1992) say that the average total membrane area for
cat LGN cells is 38 000 pm? whereas Wang et al. (1991) in their model of a thalamic neuron assume a (somatic) membrane
area of approximately 1000—2000 um?. Using the middle value (1500 pm?) of this latter area our value for gy corresponds to
12 nS per cell.
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Then equations (1) become:
b= CH{—(gr. + grmu) (v — v1)

— 8K (v) (v — vi)

—&grmr,, (”)/IT(” - vca)

Ca(T) T c) (v =) ()

+ Iy + 1 — gamu (v, — vu)},
bt = iy (br, (v) = h1),

¢ = —kgrmr_(0)hr(v — cca) — kcat,

4
— &K Ca(T) ( X
a

my = Tf;}l, (my,, (v) — my)- J

Except for the fact that gy, has been replaced by
(g1, + gamy), we can think of the first three equations
(2) as those of equations (4) of Hindmarsh & Rose

1994a) driven by an equivalent external current,

(
Iee = (I - gHmH(vL - vH))'

3. A MODEL OF THE MODEL

We want to approximate equations (2) using the
model of the model introduced in Hindmarsh & Rose
(19944). To justify this we could decrease the value of
g1, to partially compensate for the ggmy term. This of
course could not be done exactly because my is a
variable. However we made no alteration to the value
of g;, and found that everything worked satisfactorily.
For the above equivalent external current these
equations are:

i=—ar(l +ar®

—b(z+ (I — gamu(vr, — vu)) Ta1 /7)),
; 2 (3)
0=—B+ e,

p=—y(z—a® +dr*).

The essential idea in the model for spindle
generation is as follows. When the system is under-
going low threshold oscillations, the slow variable my
(equations (2)) will gradually increase. The resulting
increase in the equivalent external current will drive
the oscillations to the right of the (v =g, /)
bifurcation diagram (reproduced from Hindmarsh &
Rose (1994a) in figure 1). When the equivalent
external current reaches a value of approximately
1.6pAcm™2 the system will return to a (non-
oscillatory) Ep. Then the equivalent external current
should decrease to approximately —0.2 pA cm™2 as the
system crosses the left-hand bifurcation point, where-
upon the oscillations will restart.

In our model my will vary (within [0, 1]) and, as it
does so, we want:

(I — gumu(vi, — vu)),

to vary between approximately —0.2 pA cm™2, where

Phil. Trans. R. Soc. Lond. B (1994)

it will switch on the low threshold oscillation, and
1.6 pA cm~2, where it will switch off.

Consistent with this requirement, but not uniquely
determined by it, we choose gy = 0.8mScm™2 and
I = —1.4pA cm™2, which means that we will want my
to vary between 0.08 and 0.2 (gg may be smaller or
larger depending on the initial choice of I).

The behaviour of my is determined by the
differential equation:

gy = T;},(WZHM (v) — my).

Since 7,1 is small, my changes slowly by

comparison with v. Therefore my will change towards
the average value of my_(v). This average value
depends mainly on whether or not the system is
undergoing low threshold oscillations. Having
changed variables from (v,AT,¢) in equations (2) to
(r,0,2) in equations (3), we need to express v in terms
of these variables.

Using transformations (8), (9) and (14) of
Hindmarsh & Rose (1994a) the membrane potential
is given by:

v=1 + Tﬁlrcosa + Tﬁlx(lee) + Tlgl(z + Z(Iee))a
but we find that it is sufficient to take:
v~ vy + Ti7 7 cos b,

as it is the term rcosf that varies most between
oscillatory and non-oscillatory solutions.
The equation for sy can now be written as:

my = 7',;,1{ (mu (vo + Tii'r cos 0) — my).

The steady state value of my can now be expanded
as a Taylor series:

my (vo + T 'r cos §) =~ my (vo) + T11'r cos Hm'Hoo (vo)

T lrcos )2
Because 71

wy is small, my changes slowly in time
compared with 6. We therefore replace r cos 8 with its
averaged value zero, and 7% cos? § with its averaged
value 72/2. Ignoring higher order contributions from
the Taylor series gives the following equation for riy:
—1)2
i = (m (0) + L () — )
Again, using the fact that 7;111 is small we will
assume that we can simplify further by putting
z=c* —dr* in equations (3). This means that the
behaviour of the system is now described by the two-
dimensional system:

i = —ar(1 + (a— be)* + bar*
= b(I — gumu (v, — vu)) Ts1 /),
) 3 71 2
iy = 7 (m (0) + L 2l (1) — mg).
Using the new variable

w=myg — mHoo(Uo),
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these equations become:

i:—ar(l+e+(a—bc)r2+bdr4+fw),} ”
4

=7, (h* — w),

where

e = —b(I — gumy, (v0) (o, — vn)) T1 /7,
JS = bgulvy —ve) Ta1/7y,

T-1 2
=000 )

4. LIMIT CYCLE OF THE MODEL OF THE
MODEL

Equations (4) have EPs at those points whose
coordinates satisfy the equations:

r(1 + e+ (a — be)r® + bdr* + fuw) =0,
and
W —w=0.

There is therefore one EP at (0,0) and, provided
that (1 +¢) < 0, another at (wg,7y), where:

1+ ¢+ (a— be +fh)rg + bdrg =0, (5)
and
/l?'(z) —wy = 0.

The reason for this is that:
o =

{~(a — be+ /) + /(@ — bo +/B)* — 4bd(1 + 6)1}1/2
2bd ’

(6)

is real provided that 4bd(1 +¢) < 0 or, equivalently
1 4+¢<0 (as 46d > 0).

Consideration of the state diagram, in particular
the configuration of the nullclines (figure 24) suggests
that if it is an unstable node or spiral it will be
enclosed by a stable limit cycle. We therefore analyse
the stability of this EP.

The linear approximation matrix at (wg, 7o) is:

A(woﬂo) =

(—a(l + ¢+ 3(a — be)ri + 5bdrd + fuwo —aﬁo)

21, L by —Tpk

Using the facts that ry and wy satisfy equations (5),
we find that the determinant of this matrix is:

2¢1L‘1',;:I(bafr61 —(1+¢),

which is positive for 1 + ¢ < 0 (the condition for real
o). Note also that this means that the EP is not a
saddle point. Thus the condition that (wg,7p) is an
unstable EP is simply that the trace of the matrix
A(wg, 7o) is positive. Again using equations (5), this
condition for instability is:

2a(a — be + 2bdrd)ré > T;;.

Phil. Trans. R. Soc. Lond. B (1994)

For sufficiently small ‘r,;}I this gives:

—(a — bc
d<=ltd

Substituting equation (6) we obtain:

(a— be)((a— be) + 2/h)

1 .
15 <(1+e¢

Since the determinant of A(wg,7y) is positive for
(14 ¢) < 0, the conditions for the EP to be unstable
are:

(a—be)((a—be) +2/h) < (14+¢) <O0. (7)

In this expression the values of a, &, ¢, d and f have
already been fixed as discussed in § 3. The values of ¢
and & depend on the values of y,, and 6,  which
have not so far been specified. Values of y,,, in [0, 1]
and 6,, in [-80mV,—60mV] for which these
inequalities (equation (7)) are satisfied are shown as
the shaded region in figure 24. The nullclines of
equations (4) are shown in figure 24 for the choice of
(0y,Ymy) represented by the point (—74mV,
—0.25mV~1) in the shaded region of figure 2a. Also
shown in figure 24 are some state paths emerging from
the region near the r nullcline, and the limit cycle.
Note that although the limit cycle lies very close to the
w axis it does not touch it. In fact the separatrix from
the saddle point wraps infinitely around the outside of
the limit cycle.

The (0,,,,,¥ny) diagram of figure 2a is divided into
regions where 14 ¢> 0 and where 1+ € <0 by the
solid curve. Immediately to the left of this curve is the
shaded region of parameter values giving limit cycles
and nullclines such as those shown in figure 24. We
will show in the next section that the physiological
model generates spindles for parameter values in this
region. For points to the left of this region the
nullclines intersect at a stable EP with » > 0, as shown
in figure 2c. In the physiological model this
corresponds to the cell generating continuous low
threshold oscillations. Finally in the region where
1 +¢> 0, the nullcline configuration is as shown in
figure 2e¢, with a single stable EP on the r axis. Here the
corresponding physiological model also has a stable
EP.

We note that the three nullcline diagrams shown in
figure 2¢—¢ correspond to the same value of the slope
parameter 7y, ., and differ only in the parameter 6,
which locates the activation curve my_(v).

5. THE PHYSIOLOGICAL MODEL OF THE
UNDRIVEN SPINDLE

The parameter values a, b, ¢ and 4 in the model of
the model of Hindmarsh & Rose (1994a) apply at
v = —63.3mV, v, =-59mV, Ij=—1.35pAcm™2
and I = OpAcm™2.

In the model of §3 (equations (3)) of this paper we
used a value of I = —1.4pA cm™2, which amounts to
a constant external current (I + fy) of —2.75 pA cm™2.
A physiological model with external current of
OpAcm—2 is obtained by adjusting the value of vy,
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=081 . —08

! (14+e)<0 ]

>

E 061 T - 06 -

3 <

£ —04 - £ _04
-0.2 1 0.2 -

(I+e)>0

-7 —72 —68 -—64 —’I76 —';2 -—éS —254

9m,,/mV ‘9m,,/mV
. (@) (e)
r=0 . 0 r= 0 0
w = r=
/ SN -
: w=(
i
0: 1 T . ‘\
0 stable
limit cycle
US US
A % Ny
-0.05 0 0.05 w 0.15 -0.05 0 0.05 w 0.15 -0.05 0 0.05 w 0.15

Figure 2. Models for the undriven spindle. (a) (8,,,,,¥n,) parameter space for the model of the model showing
the region, obtained analytically, where the single EP of equations (4) is unstable (hatched region). (b)
(011> Ymy) parameter space for the physiological model showing the region where numerical integration of
equations (1) exhibits spindles (hatched region). (¢) Nullcline diagram for the point labelled (¢) in (a)
(0, = —77mV, y,,, = —0.25 mV_l)‘ Nullclines intersect at a stable node or spiral (sN) and an unstable saddle
point (us). (d) Nullcline diagram for the point labelled (d) in (a) (0,, = —74mV,y,, = —025 mV_l). Null-
clines intersect at an unstable node or spiral (UN) and an unstable saddle point (us). Numerical integration of
equations (4) show that the UN is surrounded by a stable limit cycle. Separatrix leaving the uUs point indicated
by the vertical dashed line. (¢) Nullcline diagram for the point labelled (¢) in (a) (6, = —71mV,
VYmy = —0.25 mV_l). Nullclines intersect at a single SN on the w axis. Parameter values are given in table 1 and
the Appendices of Hindmarsh & Rose (19944) except that / = —1.4 pA em ™ and v, = =59 mV for the model of
the model and 7 = 0pA cm™ and v, = —70mV for the physiological model.
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from —59mV to v}, given by:

—gr.(vo —v1) — 2.75 = —g1.(vy — o).

Thus j, = —70mV.

We replace ¢y, in equations (1) with this new value
and set the external current to zero. Using the
same parameter value for gy, figure 25 shows the
regions in the (8,,,,,¥,,) parameter space for which
the physiological model is continuously bursting (top
left-hand region), generates spindles (hatched region)
or is silent (to the right of the solid curve). This figure
was obtained by numerical integration of equations
(1) by exploring parameter values for (0, ,¥n,)
suggested by the results from the model of the model
shown in figure 24. In view of the approximations
made it is not surprising that figures 2a and 26 are
not identical. However they do exhibit a similar
configuration of the various regions.

For the point (d') in figure 26, where (8,,,,, V) =
(=0.4mV~! —71mV), numerical integration of
equations (1) gives the spindle oscillation for the
physiological model (figure 3b). This oscillation is
similar to the spindles recorded experimentally in TC
cells (Soltez et al. 1991, figure 8). In particular the

Phil. Trans. R. Soc. Lond. B (1994)

envelop of LTS amplitudes is similar, and the down-
ward drift of the membrane potential between »; and
v3 is a characteristic feature of the recorded spindles.

To explain these features we first draw the (v, my)
bifurcation diagram (figure 3a). This diagram is
obtained by taking the first three of equations (1)
and treating my as a bifurcation parameter, rather
than a variable, whilst keeping / constant. Then,
on the same diagram we show the points whose
coordinates are the values of v and my between
spindles and also the maximum and minimum
potentials of the LTSs during spindles.

Starting at time ¢ (figure 36) where the membrane
potential is v, these points follow the line of Eps of the
bifurcation diagram, giving a downward drift of the
membrane potential to v3. They cross the bifurcation
point at time f, then, after a noticeable delay,
separate from what is now an unstable EP of the
bifurcation diagram at time f3. At time ¢, these points
are at the upper and lower branches of the stable limit
cycles of the bifurcation diagram. Between times #
and #5 they follow these branches before returning to
the start at time f.

Experimentally Soltez ¢t al. (1991) have found that
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Figure 3. Physiological model of the undriven spindle. (¢) Changes in membrane potential v and activation my
during one cycle of the spindle oscillation shown in (5). These changes are superimposed on the (my,) bifurca-
tion diagram. For the bifurcation diagram the solid line indicates stable EP or limit cycle and the dashed line
indicates unstable EP or limit cycle. For the changes in membrane potential » and activation my the successive
maxima and minima for the LTss are shown as solid lines. (4) Timecourses of membrane potential v (upper
trace) and activation my (lower trace) obtained by numerical integration of equations (1). Parameter values are
as in figure 2 and for the point (d) in figure 26 where (8, = =71 mV,y, = —04mV~1).

noradrenaline has the effect of transforming low
threshold oscillations into spindle oscillations and
then into a silent state. This happens over a slow
time scale (approximately 20min) and is accom-
panied by depolarization of the cell and an increase in
the amplitude of Iy as measured under voltage clamp
conditions. During washout of the neurotransmitter
the sequence is reversed.

We can interpret these observations using figure 2
and the fact that noradrenaline has been shown
to cause a positive shift of 3-5mV in my_(v)
(McCormick & Pape 19904). To do this we selected
point, (¢'), (d'), and (¢’) in figure 25, along a line of

Phil. Trans. R. Soc. Lond. B (1994)

constant slope (y,,, = —0.4mV~1!) at 6, = —73mV,
0y, =—7lmV and 6, =-69mV. If the cell
was initially at 8, = —73mV it would be continu-
ously oscillating. At 6,,, = —71 mV it would produce
spindle oscillations, and at 8,,, = —69mV it would be
silent. Thus we interpret the effects of noradrenaline
on TC cells as observed by Soltez et al. (1991) as a
horizontal movement of 6,, of 3-5mV in the
(01455 Ymy) diagram as shown in figure 2b.

For an interpretation of these results, using the
model of the model, we take the points (¢), () and
() in figure 2a along a line of constant slope
(Ymy = —0.25) at 6, =-77mV, 6, =-74mV
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and 6, = —71mV. These points correspond to the
two-dimensional systems (equations (4)) whose null-
cline diagrams are as shown in figure 2¢—e. Note that
as 0, increases from —77mV to —71mV the w
nullcline becomes less steep and the 7 nullcline moves
to the left. This causes the system to change from
having a stable EP off the w axis (continuous bursting),
through having a stable limit cycle (spindling) to
having a stable EP on the w axis (resting).

6. MODEL OF THE MODEL OF A DRIVEN
SPINDLE

We now add a periodically varying external current,
I cos wt, to the model described by equations (2) to
give:

= C"{~(er. + gumm)(v— o) )

- gK”go (0)(v —w)

—grmr, (”)hT(U - ”Ca)

c
—8KCa(M\ 7 (7/ - UK)
. (KCam + ) (8)

+ Iy + I+ I cos wt — gymy(vy, — vy)},
by = 7y by (v) = b)),
¢= _kgT mr, (Z))}ZT(Z) - UCa) - kCaca

My = T;Ii(me(U) — my),

The first three of equations (8) are the same as
equations (3) of Hindmarsh & Rose (199454) except
that g; has been replaced by (g1, + ggmy) and I has
been replaced by:

I = 1 _gHmH(vL - UH)'

In Hindmarsh & Rose (19944) we approximated
these three equations by a model of the model in
(r,0,z) coordinates and then averaged the equations.
Applying the same approximation, assuming that
g1 ~ (g1, + gumy) and using the new variable
w = my — my_(vg), as in §3 of this paper, we obtain
after averaging:

i = —ar(l +e+ar® — bz + fu) +§cos¢,

g

p=—ylz—a®+dr*),

8+ e +§sin¢,

b =7 (b — w).

We will not consider a range of driving frequencies
but only a frequency near resonance that allows the
term (g/2) cosy its greatest effect. This happens if 4 is
kept small, which is the case when & + er? = 0. This of
course cannot be achieved for a range of values of 7,
but by choosing & so that 8§ + er2 = 0 for r = r,, for
example we keep ¢ near 0.

Phil. Trans. R. Soc. Lond. B (1994)

As before we assume that z &~ ¢* — dr* and replace
it as such in the equation for 7 leaving us with:

7= —ar(l + e+ (a — be)r® — bdr* + fw) +g/2,} ©)
W= T,;il (h* — w).

Note that these equations for the driven spindle
differ from those for the undriven spindle (equations
(4)) by addition of g/2 to the # equation.

We want to start the system at a stable EP when
g=20. This will be the case if (1 +¢) >0, giving a
nullcline configuration such as that shown in figure 2e.

For g > 0 there may be either one or three Eps.
Suppose that one of these Eps is at (wg, 7). At this EP:

—arg(1 + e+ (a — be)rg + bdrg + fw) +8/2 = 0,
wy = hra. (10)
Therefore at this EP g = f(ry) where:
S() =2ar(1 + ¢+ (a— be+ fh)r* + bdr*). (11)
The linear approximation matrix, A(wg,ry) for
equations (9) is the same as that of equations (4)
(§3). The Ep will be unstable if the trace of A(wy, ro) is
positive. Since 7',;11{ ~ 0 this gives:
(1+¢) + (3(a — be) + fh)rs + 5bdrg < 0. (12)

Since (1 +¢) > 0, the above inequality is satisfied
between two (positive) values of 7y given by:
2
rL =

—[3(a — be) + /1] £ /[(3(a — be) +fh)% — 20bd(1 + ¢)]
106d

We now want to determine the conditions for which
equation (12) has real roots, r_ and 7, and all eps fall
within [r_,r,]. In the simplest case (Cl), in which
S'(r) =0 has no real roots, there will be just one
unstable Ep in [r_,7,]. If f/(r) = 0 has real roots, we
begin by finding out if there is a range of g values,
[g_,84], with g_ < g,, such that if g € [g_,g,] then
all Eps lie inside [r_,r,].

Let r; be the point where f(r) has a maximum, and
79 the point where f(r) has a minimum value. Let g_
and g, be defined by:

_ { max ( f(r), f(r_), if r <r_
B Sro), if r_ <y,
7= {min (S (rs), S (1), ?f ry <79
S(ry), if 7y <7y

Then if g_ < g < g, all roots of equations (11) lie
in [r_,7,]. Assuming g_ < g < g, so that all Eps are in
[r_,r.], the question is how many Eps are there?
Under the following conditions there will be just one
unstable EP:

rn>r, 1 >rg, (G2)
>, 1>y, (C3)
rg > 1y, 1 >7T_, (C4)
. >r19, T_>T1q. (C5)
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The case where rg > 7, and r_ > 7y is excluded as it
would require the contradictory condition that
g+ < g_. Under the following condition the system
has three unstable Eps:

(C6)

In Figure 44 the hatched region gives values of ,, .,
in [0,1] and 6, in [-80mV,—60mV] for which
equations (9), with g=0, have an unstable EP
surrounded by a stable limit cycle. This region is the
same as that of the undriven spindle model shown in
figure 2a.

The stippled region to the right of the hatched
region gives values of v, ~—and 6, 6 for which
equations (9), with g > 0, can have one unstable Ep
in [r_,ry] as given by conditions Cl1-C5 above.
Finally the black region gives values of y,,, and 0,,,
for which equations (9), with g > 0, has three unstable
EPs in [r_,7,] as given by condition C6. In both the
black and stippled regions 1 +4e¢ >0 and we expect
the system to have a stable EP with g = 0 as in figure
2a. With g > 0, there is the possibility of a limit cycle
surrounding one unstable Ep if a point lies in the
stippled region and of a limit cycle surrounding three
unstable EPs if a point lies in the black region.

>0, 19 <7,

£=0)

In our model of the model of the undriven spindle
(§4, see figure 2d) the point (=74 mV,—0.25mV~1)
gave a limit cycle oscillation. For our model of
the model of a driven spindle we choose a point
immediately to the right of this point at
(—=74mV,—0.25mV~1). At this point, labelled (e’)
in figure 44, the system is at a stable EP with g = 0 as
previously shown in figure 2e.

With this choice of values of 6, and y,,, which
determine ¢ and A, we now select a value of g in
[5_,2.]. The resulting r and w nullclines intersect at
one unstable EP as shown in figure 4¢. The effect of the
driving current g has been to change the configuration
of the r nullcline from that shown in figure 2¢ (with
to the Z-shape of figure 4e. Numerical
integration of equations (9) show that the unstable
EP is surrounded by a stable limit cycle.

Using the same value of g with (0,,,¥m,)
having values (—74 mV,—0.25mV~!) and (—74mV,
—0.25mV~1!) we obtain the nullcline diagrams of
figure 4¢,d. Comparing figures 2¢ and 4¢ we see that
the addition of the driving term, g, only causes a slight
movement in the location of the stable node. This
can be related to the experimental observation
(McCormick & Feester 1990; Soltez & Crunelli

(a) (%)
—038 o
- (I+e)<0 n
S 06 A 2
g
~ 3
¥ -04 A 3
& &
—0.2 1
(I+e)>0
—76 -T2 —68 —64
Om e /Y
(e) (d)
F=0 (e)
/ r=0
0.02 1 SN 4 stable
N / limit cycle
=0
0.01 A v
w=0
T T T T T T T T T T T T
—0.05 0 0.05 w 015 -0.05 0 0.05 » 0.15 —0.05 0 0.05 0.15

Figure 4. Models of a driven spindle. (a) (0,,,,,¥n,) parameter space of the model of the model divided into
regions where there is one EP of equations (9) which is unstable when g =0 or g = 0.003 (hatched region), one
EP which is stable with g = 0 but unstable with g = 0.003 (stippled region) or three unstable Eps with g = 0.003
(black region). (4) (0, ,,7¥n,) parameter space of the physiological model divided into regions where numerical

integration of equations (8) gives spindles when I=0pAcm™

% (hatched region), gives a stable resting potential

with 7 =0pAcm™2 but spindling with I = 0.66 pA cm™2 (stippled region) or a stable resting potential with

I =0pAcm™2 but bursting with 7 = 0.66 pA cm ™2

(black region). (¢) Nullcline diagram for the point labelled (¢)

in (a) (8,,=-77mV,y,, =—-0.25 mV™!). Nullclines intersect at a stable node or spiral (sn). (d) Nullcline
diagram for the point labelled (d) in (a) (0,, = —74mV,y,,, = —0.25 mV—l). Nullclines intersect at a stable
node or spiral (sN). (¢) Nullcline diagram for the point labelled () in (a) (8, = —71mV,y, = —-025 mV‘l).
Nullclines intersect at an UN surrounded by a stable limit cycle. Parameter values as in figure 2.
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1992) that Tc cells which are already oscillating
remain in the bursting state when receiving synaptic
inputs.

Comparing figures 24 and 44 we see that the effect
of the driving current is to switch the system from
spindling to continuous bursting. For other parameter
choices in this hatched region the effect of the driving
term can be simply to shorten the interval between
spindles.

Finally note that had we chosen a parameter point
in the black region of figure 4a, the system would have
three unstable Eps. In this case it is possible to have a
stable limit cycle surrounding two unstable nodes
separated by a saddle point (not shown).

A model of intrinsic and driven spindling

7. THE PHYSIOLOGICAL MODEL OF THE
DRIVEN SPINDLE

We now set all parameters, except 8,,, and y,, ., to the
values used in §5. This includes the adjustment of vy,
to —=70mV and Ig,, to zero. Guided by the model of
the model we chose a driving current in equations (8)
of I = 0.66 pAcm™2 and frequency f = 30 Hz. Figure
4b shows the regions in (6,,,,Yx,) parameter space
for which the physiological model is continuously
bursting (top left region), would generate intrinsic
spindles with 7= 0pAcm™2 (hatched region), is
stable with 7 = 0 pA cm™2 but is driven into spindling
with I = 0.66 pA cm~2 (dotted region), is stable with

(a)
-
maximum l.t.s. potential
— 40
AN
g —60 —
~
o
— 80 —
T
0.05
(®)

—60

v/mV

—-80 -
0.15

0.05

0.1 0.15 0.2

Figure 5. Physiological model of the driven spindle. (a) (mgy,v) bifurcation diagram used to illustrate the changes
in membrane potential v and activation my during one cycle of the driven spindle shown in (4). This figure uses
the same notation as figure 3a. The system is initially at the stable EP indicated before being driven into a limit
cycle. (b) Timecourses of the membrane potential » (upper trace) and activation my (lower trace) obtained by
numerical integration of equations (8) for the point labelled (¢/) in figure 46 where 0y = —69mV_ and
VYmy = —0.4 mV ™', The system is driven into spindling by a sinusoidal input of amplitude 7 = 0.66 pA cm™? and
frequency f = 30 Hz as indicated below the figure. Parameter values are as in figures 2 and 3.

Phil. Trans. R. Soc. Lond. B (1994)
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I =0pAcm~2 but is driven into continuous bursting
with 7 =0.66 pAcm™2 (black region) and finally is
stable with 7 =0pAcm™2 and gives only a small
subthreshold response with 7 = 0.66 uA cm™% (bottom
right-hand region). This figure was obtained by
numerical integration of equations (8) by exploring
parameter values for 8,,,,7,,,) suggested by the results
from the model of the model shown in figure 4a. In view
of the approximation made it is not surprising that
figures 4a and 46 are not identical. However they do
exhibit a similar configuration of the various regions. It
should be noted that for parameter values in the black
region the model of the model is driven into spindling
whereas the physiological model is driven to bursting.

For example choosing the point (¢') in the dotted
region of figure 46 where (0,,,Vn,) = (—69mV,
—0.4mV™1) the system has a stable EP without the
driving current and is driven from this stable EP into a
spindle oscillation with the driving current (figure 55).
Figure 5a shows the corresponding (v, my) bifurcation
diagram. This diagram has been drawn in the same
way as figure 34, with which it can be compared. We
see that to begin with the system is at a stable EP of the
bifurcation diagram, which is well inside the region in
which we expect resonance to occur (Hindmarsh &
Rose 19944). Application of the sinusoidal input
current causes the points at which the membrane
potential has a maximum or minimum to move
outwards towards the upper and lower branches of
the stable limit cycles of the bifurcation diagram. The
points then cross these branches and approach the line
of stable EPs of the bifurcation diagram.

The most significant difference between the
undriven and driven spindle is that these points do
not reach this line of stable EPs in the case of the
driven spindle. Instead, between times ¢ and ¢3 they
gradually separate from this line and enter a smaller
limit cycle (figure 5a) than that of the undriven
spindle (figure 3a). This difference was predicted by
the model of the model as can be seen by comparing
the nullcurve configurations of figures 2¢ and 4e.

8. AN ALTERNATIVE FOUR-DIMENSIONAL
PHYSIOLOGICAL MODEL

Destexhe et al. (1993) have recently discussed several
alternative models of intrinsic spindling in TC cells.
The simplest of these models has three ionic currents
Iy, Iy and a slow outward current /g, (Huguenard &
Prince 1991). In this model It is described by the
four-dimensional model of Wang et al. (1991), Iy by a
slow and a fast variable and I, by three additional
variables. This gives a nine-dimensional model.

We now show that it is possible to simplify this
model to a four-dimensional system by removing I,
and using a simpler description for I.

In their paper I is given by gysf (v — vg) where s
and f are slow and fast variables satisfying the
differential equations:

§= Tfl(me —),

/= Tf_l(me ~f)-

Phil. Trans. R. Soc. Lond. B (1994)

Removing the ¢ equation and Ixgy(r) from the o
equation of our physiological model (equations (1))
and replacing our simple description of Iy with that
given above we obtain:

b= C7H{—gr(v —vL) — gk7ioo (v) (v — k) W

— grmy, (0)h(v — vc,)

¢
— 8KCa(T) (K_Ca(_T)_-i:;)

—gusf (v — vu) + exi}, ( (12)
by = 7iey (br, (v) — k1),
§ =7, (0)(mu,, — ),
f=17" @) (mu, — 1), J
where:
1
i1 () = T [0+ 69.9) /4])’
71 (0) = exp [(v + 184.6)/15.24],
) = O [(v+159.6)/11.2]
(1 +exp[(v+76)/5.5])
and gr =03mScm™2, gy =4mScm™? and vy =

—43mV. All other parameter values are given in
Appendix 1 of Hindmarsh and Rose (19944). These
equations will generate spindles for I, between
—4.75pAcm™2 and —3.9pAcm™2, a smaller range
than our four-dimensional model. Figure 6a shows the
result of numerical integration of equations (13) with
Iixe = —4.7pA cm~2. Also shown are the timecourses
of s, f and their product. Note that the timecourse of
the product is not unlike the time course of my in our
four-dimensional model.

We also find that if the system is generating spindles
and Ig, is changed to g, = —4.255pAcm=2 these
spindles will terminate and later go into a small
amplitude slowly damped oscillation (figure 64). This
is almost identical to the behaviour shown in figures
4a and 8a of Destexhe et al. (1993) for their more
elaborate models.

In the next section we will investigate the effect
of adding an Igg,T) current to the above four-
dimensional model to give a six-dimensional model
which, unlike our first model of §2, has the above
voltage-dependent time constants 7,(v), 7/(v) for the
activation of If.

9. PHYSIOLOGICAL MODEL WITH COMPLEX
KINETICS FOR Iy

At the end of our first paper (Hindmarsh & Rose
19944) we discussed a four-dimensional model
obtained by adding Ixca(t) to a simplified version of
a model given by Wang (1994). We will now show
that adding the hyperpolarization-activated cation
current Iy, with the complex kinetics described above,
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A model of intrinsic and driven spindling
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Ipy: = —4.255uAcm™2

Ipet = —4.6pAcm™2

Figure 6. (a) Four-dimensional model of the undriven spindle obtained by numerical integration of equations
(13). Upper trace shows the timecourse of the membrane potential ». Middle trace shows the timecourses of the
slow (s) and fast (/') variables. Lower trace shows the timecourse of the product sf. Parameter values are given

in the text. (4) See text for explanation.

to this four-dimensional model will produce spindles
of low threshold spikes together with action potentials.
The equations for this six-dimensional system are:

V= C_l{_INa —Ix — I, — It — Inap )
— Igcar) — In + Ipx + 1(1)},
i = ¢y7y (0) (noo (v) — ),
bt = b1 7ir ) (k1 (v) — A7), (14)
¢ = —klt — kcat,
=77 (0) (e, — ),
J =17 @) e, ). J

The parameter values for Iy,, Ix, I, It, Ina.p
and [gc,(T) are as given in Appendix 3 of Hindmarsh
& Rose (1994a) except that gy, =50mScm™2,

Phil. Trans. R. Soc. Lond. B (1994)

gnap =4mScm™2, oy =—3mV,  ggcar) = 0.3
mScm™2, kg, = 0.01mS™ and with Vgep = OmV.
These adjustments were made to make the threshold
for the action potential similar to that of the recording
of Soltez et al. (1991, figure 8) and to make Ixc,(t) as
small as possible.

The definitions of my_(v), 7, (v) and 77" (v) for the
hyperpolarization-activated current [f; are:

B 1
mHm(v) - 1+ exp [(1) + 75)/67]) ,

7 (v) = exp (v + 189.7)/15.24],

() = exp [(v+ 164.7)/11.2]

4 (1 +exp[(v+81.1)/5.5))’
and gg =0.7mScm™? and vy = —43mV. The
expressions for my_(v), 7;7'(v) and Tfl (v) are as
given by Destexhe e al. (1993) except that they have
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been shifted to the left along the voltage axis by
6.1mV.

Numerical integration of these equations gives the
results shown in figure 7. The spindles (upper trace)
are similar to the recording shown in figure 8 of Soltez
et al. (1991). Although the LTss and the action
potentials are similar to the experimental recording,
the inter-spindle frequency (0.07 Hz) and the intra-
spindle frequency (10Hz) both have higher values
than found experimentally. Note however that Wang
(1993) has shown that small adjustments to gt and gy,
can convert the frequency of the low threshold
oscillation from 10Hz to 3Hz. It may be possible
to lower the intra-spindle frequency in this way.
Alternatively the addition of Iy, (Huguenard &
Prince 1991) may have a similar effect.

10. REVERSE SPINDLING

In this section we present an interesting variation
on the above models for spindle generation that is
consistent with observations on neurons of the
nucleus reticularis thalami (von Krosigk et al. 1993).
This model uses a similar mechanism to the models
above, that is, a slow current driving the system
around a bifurcation diagram, but in the reverse
direction.

v/mV

_90_
0.6 7
[y
8
o 0.3 -
0.1 A
Gy
«w

0

We begin with the two dimensional simplified
thalamic model of Hindmarsh & Rose (1994q):

b =C"{—gr(v — v) — gx 1o (v) (v — vg)
_ngToo(v)hT(v_vCa)+10+l+1(t)}v (15)
hy = Th_-rl(hToo(”) —hT).

By changing the separation between my_(v) and
hr (v) we change the bifurcation diagram from that
shown in figure 1 of Hindmarsh & Rose (1994a) to
that shown in figure 84. This bifurcation diagram is
indented at both ends (like the Type C bifurcation
diagram of Hindmarsh & Rose (19944)) which raises
the possibility of a slow current driving the system
around the left-hand end (unlike the mechanisms
described above which worked with the right-hand
end).

Suppose the system starts near an unstable EP just to
the right of the left-hand bifurcation point and so goes
into low threshold oscillations. To drive the system to
the left in the bifurcation diagram we need a
hyperpolarizing current that is activated by these
oscillations. Such a current is available in the Ca?*-
activated K* current Ik ca(T), provided that we slow
down the rate of change of calcium concentration.

Thus we added Ixcar) = grca(r)(¢/(Kca +¢))
(v — vg) to equations (15) and plotted the bifurcation
diagram using ¢ as a bifurcation parameter and keeping

0.05 - N\/\

5s

Figure 7. Six-dimensional model of the undriven spindle obtained by numerical integration of equations (14).
Upper trace shows the timecourse of the membrane potential v. Middle trace shows the timecourses of the slow
(s) and fast (f) variables. Lower trace shows the timecourse of the product sf. Parameter values are given in

the text.
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Figure 8. Reverse spindle model. (a) (I + I,v) bifurcation diagram for the two-dimensional simplified thalamic
model of Hindmarsh & Rose (19944) with v, = 1.8mV (equations (15) of this paper). Sloping line gives
coordinates of EPs whose stability is indicated as: solid line, stable; and dashed line, unstable. The bifurcation
diagram is indented at both ends with unstable limit cycles indicated by the dashed curves leaving the line of Eps
and stable limit cycles indicated by the outer solid curves. (4) (¢,v) bifurcation diagram for equations (15) with
Ixca(r) added (see text for explanation). Note that for comparison with (a), ¢ increases to the left. (¢) Changes in
the membrane potential, », and Ca?* concentration, ¢, during one cycle of the reverse spindle oscillation shown
in (). These changes are superimposed on the (¢,v) bifurcation diagram shown in (4). For the changes in v and
¢ the successive maxima and minima for the LTSs are shown as solid lines. (¢) Timecourses of membrane poten-
tial, v, (upper trace), and Ca®" concentration, ¢, obtained by numerical integration of equations (16). Parameter

values given in text.

the external current fixed (figure 85). This diagram was
plotted with ¢ increasing to the left since increasing ¢
corresponds to decreasing — I c,(t) (i-€. increasing the
hyperpolarizing current I ¢o(T)-

Finally adding the equation for ¢ we arrive at the
system:

b =C"H{—gr(v—v1) — gr 1o (v) (v — vg)

— 4T me(D)hT(” — Uca)

c
— KCa(T) <m) (v —vg) (16)
+ L+ 1+ 1(s)},
hy = Th_Tl(/le(”) —ht),

¢ = —kgrmr_(0)hr(v — vca) — kaat, ]

where all parameter values are as in Appendix 1 of
Hindmarsh & Rose (1994a) except that v, = 1.8 mV,

sep

Phil. Trans. R. Soc. Lond. B (1994)

k=0.00001 uM cm~2 pA~  ms™1, k¢, = 0.00044 ms™?,
v, = —67mV, and I, = OpA cm™2,

Figure 84 shows the timecourse of the resulting
spindle together with the timecourse of ¢. The cyclical
movement around the left hand end of the bifurcation
diagram is shown in figure 8¢. Note that this
movement is in the reverse direction to that of our
earlier models above (compare figure 3a).

Recently von Krosigk et al. (1993) have shown
recordings from neurons of the ferret perigeniculate
nucleus which are similar to these reverse spindles.
They remark that the progressive hyperpolarization
during the spindle oscillation presumably represents
the activation of a Ca?* -activated K* current by low
threshold Ca%* spikes. This is consistent with our
model in which Ikc,(t) has this function. Previously
Steriade et al. (1987) have also suggested that some
cells in the intact nRT may generate spindle
oscillations autonomously. In our model the same
system of equations (equations (16)) may be used to
give reverse spindling, which we compare with the
recordings from nRT cells by von Krosigk et al.
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(1993), and, using a different set of parameters,
rebound bursting with a tonic tail, which we
compared (Hindmarsh & Rose 1994a) with the
recordings from nRT cells by Bal & McCormick
(1993). This suggests that the nRT network, which
appears to be the pacemaker for thalamic spindling
(Steriade & Deschenes 1984) may be heterogeneous,
with some cells being capable of generating intrinsic
reverse spindles by the mechanism discussed above,
and other cells generating rebound bursting as
described in Hindmarsh & Rose (1994aq).

11. PHYSIOLOGICAL SIGNIFICANCE OF
RESONANCE

The problem of how spindling in TC cells is driven by
activity in nRT neurons is of importance particularly
in relation to absence epilepsy (e.g. Buzsaki et al.
1990). So far in this paper we have discussed the
resonant response of TG cells to sinusoidal inputs and
have not extended the results to synaptic current
inputs. Intuitively we would expect resonance to play
a significant role when spindles are driven by synaptic
inputs under physiological conditions. In this section
we briefly outline some of the relevant synaptic
physiology of Tc cells, and then reinterpret the
experimental results in relation to the property of
resonance. Although the results are numerical they
show how short-duration GABA, 1psps could play a
prominent role in driven spindling even though the
equilibrium potential for these 1Psps is reported to be
close to the resting potential of the cell (Crunelli et al.
1988).

In vivo investigations in the cat have shown that
spindle oscillations in Tc cells disappear when these
cells are disconnected from the nRT (Steriade et al.
1985), and that spindling is preserved in the
deafferented nRT (Steriade et al. 1987). This has led
to the suggestion that GABAergic nRT neurons drive
the spindle rhythm in Tc cells (Steriade & Deschenes
1984). In wvitro recordings from the ferret lateral
geniculate nucleus (Ign) (von Krosigk et al. 1993)
have also shown that 1psPs arriving from the
perigeniculate nucleus (that part of the nRT
associated with the lgn) involve the activation of
both GABA, and GABAg receptors. These 1psps could
originate from activity in local GABAergic inter-
neurons and/or from GABAergic neurons of the
perigeniculate nucleus. However von Krosigk et al.
(1993) found a lack of activity in presumed
interneurons during spindle wave generation.

Detailed information on the properties of GABA,
and GABAg 1psps in Ign cells has also been obtained
by electrical stimulation of the optic tract (Hirsch &
Burnod 1987; Soltez et al. 1989). Optic tract
stimulation evokes a short-duration 1psp followed by
a late longer-lasting 1psp. The short-duration IPSP is
Cl~-dependent and involves activation of GABA4
receptors, whereas the long-duration 1psp is K*-
dependent and involves activation of GABAg recep-
tors (reviewed by Crunelli & Leresche 1991). These
1psps can be evoked in slices that do not contain the
perigeniculate nucleus and, contrary to the findings of
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von Krosigk et al. (1993), are generated by Ign
interneurons (Soltez et al. 1989).

These experimental results together with the
theoretical results discussed so far in this paper led
us to consider the following hypothesis. Suppose a cell
was at a resting EP which was to the right of the
indentation of the bifurcation diagram (see figure 1).
Now consider the effects of a periodic train of GABA
and GABAg 1psps. These will have two distinct effects.
Firstly the summation of the long-duration GABAjy
1psps will make the resting potential of the cell more
negative and move the EP closer to the bifurcation
point. Secondly the short-duration GABA, 1psps will
act as a periodic stimulus which, if the frequency is
suitably chosen, will drive the cell into bursting. This
in turn will be terminated by the activation of Ij.

We investigate this hypothesis using our most
realistic model of intrinsic spindling (equations
(14)). To do so we need to model the GABA, and
GABAg 1psps, which we do by adding the current
terms Igapa, and Igapa, to the equation for  in
equations (14). The current term Igaga, is the sum of
N currents IG'ABAA due to periodic stimuli given at
times ¢, =ty +nT where, in terms of the frequency f,
the period 7" = 1000/f ms and {; is a short delay. It is
given by:

ZN 0
n
IGABAA - IGABAA’
n=1

where,

(17)

1((}'2BAA = gGABAASXL)(t)(U - van),

() =
{CXP(—(t —t)/7a) —exp(=(t—14)/74,) if t>1,
0 if ¢t <t,
and where ggapa, is the conductance, vy = —70mV,
t, is the arrival time of the stimulus, 74 = 0.5 ms and
Ta, = 4ms.
The current term Igapa, is similarly given by:
)
IGABAB = ZIGABAB7 (18)
n=1
where,

Ia, = 2oy (0, ) s () (0 — vg)

s (t) =
{ oxp (= (t — t,)/78,) — exp (—(t = 1,) /75,) if 1> 1,,
0 if t<t,

and where ggapa,(v,/) is the conductance which
depends on the membrane potential » and the
frequency of stimulation f, vgx = —105mV, 75 =
70ms and 7, = 110ms. To explain the nonlinear
relationship between the maximum amplitude of the
GABAg 1rsp and the cell membrane potential at
which the stimulus is applied (Hirsch & Burnod 1987;
Soltez et al. 1989) we assume that the conductance is
given by:
gaaag(f)
1 + exp (0.035(v + 80))

SGABAg (%f) =
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The GABAg 1psps also show a decrease in amplitude
with increasing frequency (Hirsch & Burnod 1987;
Soltez et al. 1989). We assumed that the amplitude
was constant for frequencies less than f,;, = 5Hz and,
for all pulses following the first in the train, inversely
proportional to the frequency for frequencies above

fmin giVing:
| gcaBa, for £ < fimins

geasa, (f) = { goaBAySmin/f TS > fin:

Equations (14’) with IGABAA and IGABAB added to
the » equation were integrated numerically for
different values of ggaga, and [ with I, =
l4pAcm™2, goapa, =2.2mSem™? and N = 100.
Initially the cell was at rest with membrane potential
—60.6 mV. The hatched regions in figure 9a are the
values of f and ggapa, for which the cell fired action
potentials. Note that the main resonance curve is at
approximately 18 Hz with a harmonic at 9Hz. The
region associated with the harmonic is closed showing
that if the amplitude is too large the cell will not fire.
Figure 9¢ shows an example where f = 19Hz and
gcasa, = 0mS cm™2 (point C in figure 9a) and the
cell does not fire. The upper trace shows the
timecourse of the membrane potential which moves

(a)

towards the bifurcation point as the slow current
Igapa, summates as shown in the lower trace. Note
that Igapa, is not constant and has a small ripple.
This is enough to build up the small oscillation seen in
the membrane potential but not enough to fire the
cell. Figure 95 shows an example where f = 19Hz
and ggapa, = 0.2mS cm~? (point B in figure 9a) and
the cell fires. The start of the resulting spindle is
shown in the upper trace and the combined synaptic
currents Igaga, and Igapa, are shown in the lower
trace. Note that the magnitude and sign of the ggapa,
synaptic current (the spikes in the lower trace) depend
on the value of (v — ) when the pulse arrives. Thus
even though vy is close to the resting potential the
magnitude of these pulses can be quite large. The
effect of the pulse on the membrane potential depends
on the arrival time within the cycle. Pulses arriving on
the falling phase build up the oscillation because
(v —vq) Is large and positive. For points outside the
tuning curve such as points D and E in figure 9a this
buildup in amplitude does not take place. This is
either because the pulses arrive on the rising phase of
the oscillation in figure 9¢ (where f = 16.5Hz and
gcaBa, = 0.2mS cm~2) or the pulses are of such large
amplitude that they reduce the duration of the low
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Figure 9. (a) (gcasa,,/) threshold tuning curves for the six-dimensional TC model (equations (14)) driven by
GABA, and GABAg 1psps as described in §11, with /g, = 1.4 pA cm_z, £GABA, = 2.2mS em™2 and N = 100. The
hatched regions are the values of / and ggaga, for which the cell fired action potentials, and consist of a main reso-
nance curve at = 18 Hz with a harmonic at = 9Hz. (4)—(¢) Timecourses of membrane potential (upper traces) and
of Igapa, + Igasa, (lower trace) for points B-E respectively in (a). In (b) ggaa, = 0.2mS cm™2 and f = 19Hz. In
(¢) gGaBa, = 0mS cm™2 and f = 19Hz. In (d) ggapa, = 0.4mS em~2 and f = 19Hz. In () gcaga, = 0.2mS cm 2

and f = 16.5 Hz. For further explanation see text.
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threshold spike as in figure 94 (where f = 19 Hz and
gGABAA = 0.4mS cm_z).

These results show how the apparently small
GABA, 1psps (with an equilibrium potential close to
rest) could have a large effect on the buildup of
oscillations for points inside the tuning curves.

12. DISCUSSION

Our view is that it is likely that spindle generation by
cat TC cells is the result of a cyclical movement around
an inverted bifurcation diagram. There appear to be
two principal ways in which this cyclical movement
could take place. The first, described by our simple
four-dimensional model of §§2 and 5 is an elaboration
of the model discussed in the previous papers
(Hindmarsh & Rose 19944,5). The second, described
by the four-dimensional model of §8, is a simplifica-
tion of the nine-dimensional model discussed by
Destexhe et al. (1993). In this model periodic motion
takes place around an inverted bifurcation diagram in
the (v,s) plane, where s is the slow variable of the
current /5. As we have remarked in the Introduction,
in their model the effect of adding I is both to invert
a previously non-inverted bifurcation diagram and to
provide a mechanism (the variation of 5) to generate
the cyclical movement around this diagram. Our
experience is that choosing parameter values so that
Iy performs this dual function is a delicate matter.

In the our model the bifurcation diagram, in the (v, /)
plane, is already inverted by I c,(t) before the addition
of Iy;. The system can be driven around this bifurcation
diagram using an my variable with a fixed time constant
(as in the simple model of §5) or using a two variable
(s,f) description of Iy (equations (13) or (14)). We
think that inverting the bifurcation diagram indepen-
dently of [t; makes the model more robust. Our final
model (figure 7) also appears to bear a closer
resemblance to the experimental recordings than the
model of Destexhe et al. (1993). For instance their model
has large amplitude LTss and shows marked oscillations
during the inter-spindle period. Neither of these features
occur in the real cell (Soltez et al. 1991).

The main argument against our model of spindling
is that Igca(r) is reported to be small or negligible in
thalamocortical cells (McCormick & Pape 1990a).
Note, however, that less than thirty percent of cat
thalamocortical cells generate intrinsic spindles
(Soltez et al. 1991) and to disprove our model it
would be necessary to show that Igc,(T) was absent in
a cell that was already spindling. We would expect it
to be absent in a cell that was not generating spindles.
Furthermore we have shown (Hindmarsh & Rose
19944) that it only requires a small Igc,(t) to invert
the bifurcation diagram and so provide conditions for
spindle generation. Voltage clamp experiments need
to be carried out on spindling TC cells to determine
whether or not this current is present.

Since the equations of our model are simpler than
the nine-dimensional system of Destexhe e al. (1993)
we have been able to predict analytically the existence
of resonance (driven spindling as in §§6 and 7) in
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these cells. This prediction depended on the presence
of an inverted bifurcation diagram. Whichever model
is closer to reality it is significant that both models
have inverted bifurcation diagrams. This makes it
likely that such resonance effects could be demon-
strated experimentally. For example if a cell is
generating spindles then according to our model
these spindles may be terminated by a small
depolarizing current leaving the cell at rest. We
then predict that the cell could be driven into
spindling by a periodic applied current.

This prediction of resonance in response to a
sinusoidal input is not just of theoretical interest. In
§11 we have shown how the form of the bifurcation
diagram and the presence of resonance near the
bifurcation point can be used to suggest a new role
for GABA, and GABAg 1pPsps. We have shown that
summation of slow GABApg 1psps would move the
membrane potential from a resting potential on the
right of the bifurcation diagram to a more negative
potential which is closer to the bifurcation point. At
this new potential, oscillations may be built up by
GABA, 1psps whose frequency and conductance
values give a point inside the tuning curves of figure
9. Note, however, that if ggapa, is too large the
membrane potential would be driven past the
bifurcation point. The EP would then become
unstable and spindles would be generated. This
appears to happen in the presence of bicucculine
(von Krosigk et al. 1993). Bicucculine is known to
both block GABA, 1psps and enhance GABAg 1psPs
(Crunelli & Leresche 1991), which would produce the
effect just described.

Experiments by Steriade and coworkers (Steriade
& Deschenes 1984; Steriade et al. 1985, 1987, 1988)
and by von Krosigk et al. (1993) strongly suggest that
the nRT is the pacemaker for the thalamic spindle
rhythm. Spindle generation in the nRT could be due
to network interactions alone or to network inter-
actions combined with endogenous oscillatory proper-
ties in some cells of the network (Steriade et al. 1987).
We predict, on the basis of the similarity to the
recordings of von Krosigk et al. (1993) that some cells
could be endogenous bursters and generate reverse
spindles as described in § 10.

Since we have a model of reverse spindling in an
nRT neuron, and we have suggested that Tc cells may
resonate to inputs from the nRT, it is appropriate to
summarize the main results of this paper by
constructing a minimal model of driven spindling in
which a reverse spindling nRT cell drives a TC cell.

In §10 we discussed a model of reverse spindling
which consisted of the simple three-dimensional
model of Hindmarsh & Rose (19944, Appendix 1)
with o, chosen to give a Type C bifurcation
diagram and small values chosen for £ and £, to
slow down the change in ¢. The more realistic
four-dimensional model of Hindmarsh & Rose
(19944, Appendix 3) can be modified in a similar
way. Reverse spindling for this four dimensional
model with v, =0.9mV, £¢g, = 0.000088 ms~!,
k=0.000002 M cm~2pA ' ms™'  and I, = OpA
cm~2 is shown in the upper trace of figure 10a, with an
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Figure 10. Minimal model of a driven spindle. () Upper trace shows membrane potential changes for the four-
dimensional reverse spindle model of an nRT neuron described in the Discussion. The equations and parameter
values for this model are as in Appendix 3 of Hindmarsh & Rose (1994a) with v, =0.9mV,
kea = 0.000088 ms™*, £ = 0.000002 uM cm™? pA™'ms™! and oy, =5mV. This nRT spindle drives the six-
dimensional T¢ model shown on the lower trace. The Tc model has the same equations, parameter values and
tuning curves as shown in figure 9 but ggags, = 0.25mS cm™2 and the input frequency, f, is replaced by the
instantaneous intraspindle frequency, fi,g, of the nRT cell. (4) The first nRT spindle (upper trace) and the first
1C spindle (lower trace) of (a) shown on an expanded timescale. For further explanation see Discussion.

expanded view of the spindle in the upper trace of figure
106. This spindle is similar in several respects to the
spindles recorded from ferret nRT neurons by von
Krosigk et al. (1993). In particular the frequency of
spindling is similar and there is a progressive hyper-
polarization during the spindle so that the cell is more
hyperpolarized at the end of the spindle than at the
beginning (shown by dashed lines in figure 10a). The
depth of this post-spindle hyperpolarization is however
less than in the recorded spindles.

To model a TC cell we used the six-dimensional
model shown in figure 7 of this paper, using equations
(14) with the parameter values given in §9 except that

Phil. Trans. R. Soc. Lond. B (1994)

the threshold for the fast action potentials was lowered
by changing oy, from 10mV to 5mV. As we are
mainly interested in the subthreshold response of the
TC cell, feedback from the Tc cell to the nRT cell was
not included. The Tc cell was coupled to the nRT cell
by adding Igaga, and Igaga,, given by equations (17)
and (18), to the ¥ equation of the Tc model. Parameter
values for Igapa, and Igapa, were as used in the
calculation of the tuning curves of figure 9a. In the
expressions for these currents the frequency, f, was
replaced by an instantaneous frequency fi, =
1000/(t, — ¢,—1), where ¢, is the time of occurrence of
the nth action potential in the nRT cell.
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Since fi,s varies between 9.85 Hz at the beginning
of the reverse spindle to 8.8Hz at the end, we
chose ggapa, = 0.25mS cm™2, Inspection of the
tuning curves of figure 9a shows that with this value
of gapa, and with this variation of f, there will be a
horizontal movement of the parameter points from
right to left across the hatched closed region that is
centred around 9 Hz. The resulting driven spindle is
shown in the lower traces of figure 10a,b.

This driven Tc cell spindle has similarities to some
of the spindles shown, for instance, in the paper by
von Krosigk et al. (1993). However, this is the first
time that it has been suggested that spindling in TC
cells could be a resonant response to inputs from nRT
cells. The nature of this resonant response is such that
only Tc cells which are themselves capable of intrinsic
spindling and which have the appropriate synaptic
inputs will respond. Whether the thalamo-reticular
system is as richly organized as this remains to be seen,
but the mechanism is consistent with the experimental
observations. It is easy to see how such a subtle
mechanism could have been overlooked, and these
results emphasize the need for an experimental investi-
gation of the responses of TG cells to sinusoidal inputs.

Finally we should like to restate an underlying
theme of these three papers namely that having a
simplified model of a physiological model allows
greater understanding and aids the construction of
more realistic models.

This work was supported by the Wellcome Trust. We thank
Joseph Rose for assistance with computer graphics and the
referees for helpful comments.
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